Category: Natural Language Processing
Day 6: Word Embeddings: an overview
Naveen
- 0
Word embeddings are a powerful technique in natural language processing which can help us represent words in a more meaningful way than other approaches like one-hot encoding or bag of words. In this blog post, we’ll provide an overview of what word embeddings are, how they work, their advantages and limitations, popular models for generating…
Read MoreDay 5: Part-of-Speech Tagging and Named Entity Recognition
Naveen
- 0
Welcome back peeps as we have already discussed about the tokenization and stop words in our last article so, in this day 5 of Natural Language Processing (NLP) journey! In this blog we will be exploring two important techniques for analyzing text: Part-of-Speech (POS) tagging Named Entity Recognition (NER) 1 – Part-of-Speech (POS) tagging is…
Read MoreDay 4: Stemming and Lemmatization
Naveen
- 0
IntroductionNatural Language Processing (NLP) plays a critical role in understanding and processing human language. This blog discusses stemming and lemmatization, essential text normalization techniques in NLP. What is NLP and Its Components?NLP is an AI-based method of interacting with systems using natural language. It involves several steps: tokenization, lemmatization, POS tagging, named entity recognition, and…
Read MoreDay 3: Tokenization and stopword removal
Naveen
- 0
Tokenization and stop word removal are two important steps in pre-processing text data for natural language processing (NLP) tasks. These steps help to prepare the text data for further analysis, modelling, and modelling training. Tokenization is the process of breaking down a larger piece of text into smaller units, called tokens, which can then be…
Read MoreDay 2: Pre-processing Text Data: Cleaning and Normalization
Naveen
- 0
Pre-processing is an important step in any Natural Language Processing (NLP) project. It involves cleaning and normalizing the text data so that it can be processed effectively by NLP algorithms and models. The aim of pre-processing is to improve the quality of the data and make it easier for NLP algorithms to process. In this…
Read MoreDay 1: 30 days of Natural Language Processing (NLP)
Naveen
- 0
Natural Language Processing (NLP) is a subfield of Artificial Intelligence (AI) that focuses on the interaction between computers and humans using natural language. It is a rapidly growing field that has revolutionized the way computers process, understand, and generate human language. In this blog, we will be exploring what NLP is, its history, and its…
Read MoreUnleashing Emotions: Vader for Sentiment Analysis
Naveen
- 0
VADER (Valence Aware Dictionary and Sentiment Reasoner) is a lexicon and rule-based sentiment analysis library that is specifically attuned to sentiments expressed in social media. It is used for sentiment analysis tasks, especially in social media and online reviews, where the language used can be informal and often contains slang, emoticons, and sarcasm. It uses…
Read MoreSentiment Analysis using TextBlob
Naveen
- 1
Sentiment analysis or opinion mining can be used to gain insights from large amounts of data. It uses natural language processing, text analysis, and computational linguistics to detect and extract emotional content from text-based sources. It is used to determine the attitudes, opinions, and emotions of a speaker or writer with respect to some topic…
Read MoreStep-by-Step Process of Implementing Stemming and Lemmatization in Python?
Naveen
- 0
Install the Natural Language Toolkit (NLTK) library. This library provides a range of tools for natural language processing, including stemming and lemmatization algorithms. You can install it using pip install nltk. Import the necessary functions from the NLTK library. For example, to use the Porter stemmer, you would use the following import statement: from nltk.stem.porter…
Read MoreWhat is the Normal Distribution?
Naveen
- 0
Probability distribution is the function that shows the probabilities of the outcome of an event or experiment. Consider a feature (i.e., column) in a dataframe. This feature is a variable and its probability distribution function shows the likelihood of the values it can take. Probability distribution function are quite useful in predictive analytics or machine…
Read More