Difference between Leaky ReLU and ReLU activation function?

What is an Activation Function? An activation function is a critical component in neural networks. It determines a neuron’s output after the neuron processes its inputs by computing a weighted sum. The activation function decides whether the neuron should be activated or not, introducing nonlinearity to the model. This nonlinearity enables the model to learn…

Read More

What is ReLU and Sigmoid activation function?

The activation function is a nonlinear function that takes in the weighted sum and produces the output. They are used to provide a more simplified model of neuron behavior which can be used as an input to deep neural networks. There are many different activation functions that can be used, including sigmoid, hyperbolic tangent, logistic,…

Read More

What is Vanishing and exploding gradient descent?

Vanishing and exploding gradient descent is a type of optimization algorithm used in deep learning. Vanishing Gradient Vanishing Gradient occurs when the gradient is smaller than expected. It causes the earlier layers to start degrading before the later ones do, causing a decrease in the overall learning rate of that subset of layers. The weights…

Read More

What is forward and backward propagation in Deep Learning?

Forward propagation is a process in which the network’s weights are updated according to the input, output and gradient of the neural network. In order to update the weights, we need to find the input and output values. The input value is found by taking the difference between the current hidden-state value and that of…

Read More

What is multilayer perceptron?

A multi-layer perceptron is a type of artificial neural network. It has one or more hidden layers between the input and output layers, each of which can be thought of as a series of processing units connected to each other in a hierarchical tree structure. The input layer nodes are connected to the hidden layer…

Read More

Difference between machine learning and machine reasoning?

Machine Learning is a subset of artificial intelligence, which is a type of statistical learning. It provides computer programs with the ability to automatically learn from data without being explicitly programmed where to look for patterns. Machine Learning algorithms do not need to be explicitly programmed where to look for patterns in order to find…

Read More

Difference between perceptron and neuron?

Perceptrons are a type of artificial neural network that can be used for classification and regression. They are supervised learning algorithms, meaning they need labeled input data in order to learn. how to map inputs to outputs. What independent variables do perceptrons need? Perceptrons require at least one input and one output. What are the…

Read More

What is perceptron?

The perceptron is a type of artificial neural network (ANN) that is designed to recognize patterns in data. It can be used to identify objects, classify images, and detect changes in the environment. The perceptron was invented by Frank Rosenblatt in 1957 while he was working at Cornell Aeronautical Laboratory as part of a research…

Read More

What is L1 and L2 regularization in Deep Learning?

In deep learning, L1 and L2 regularization are regularization techniques used to penalize the model’s weights during the training process. This penalty discourages the model from assigning excessive importance to certain features, thereby reducing the risk of overfitting. L1 Regularization L1 regularization, also known as Lasso regularization, adds a penalty proportional to the absolute value…

Read More

Some examples of simple gradient-based NLP models.

There are a lot of simple gradient-based NLP models that can be used to solve a variety of natural language processing tasks. Some of these include: Part-of-speech tagging: sentence parsing is a task that assigns part of speech tags to words in text and is used to analyze sentences. A task that assigns part of…

Read More